If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+150t+844
We move all terms to the left:
0-(-16t^2+150t+844)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+844)=0
We get rid of parentheses
16t^2-150t-844=0
a = 16; b = -150; c = -844;
Δ = b2-4ac
Δ = -1502-4·16·(-844)
Δ = 76516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76516}=\sqrt{4*19129}=\sqrt{4}*\sqrt{19129}=2\sqrt{19129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{19129}}{2*16}=\frac{150-2\sqrt{19129}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{19129}}{2*16}=\frac{150+2\sqrt{19129}}{32} $
| 11a-20=-18 | | 2x=x-19 | | 4587234852348885428534852834=x | | -21.900092138213712347134271423354=x^-2(6^7) | | 13x+13×50+13x+13×10+13x=975 | | a+1+3=-10-6a | | 4=x/5+6 | | 2(3x+4)-2x+8=0 | | -21=x^-2(6^7) | | +-2133241=x^-2(6^7) | | 823832-x=99 | | 1.5/3.75=2/x | | X^2+8x+15÷3x+15X=0 | | -4-8r+6r=14+r+4-4 | | 13x+13*50+13x+13*10+13x=975 | | (5/9)(F-32)=c | | X1=1/2x2=3 | | (7(2t+10))/2=6 | | 61x+41=2x+3(5-6x) | | -(2t+10)=-88 | | 04(2t+10)=-88 | | 4,7+2,5x=9,2 | | 6m-12+6m=2m+2-4m | | 5(x-3-4)=0 | | 3-(-3x)-7x-(-33)-(-12x)+8=52 | | -(x-3)=3 | | 8(x-14)=24 | | -6x+4(x-5)=-38 | | (x-7)*10=80 | | (x-5)*6=24 | | (x+2)*3=18 | | x*9+21=x*6+90 |